Modular Arithmetic

Warm-ups

Try these problems to get used to modular arithmetic!

- 1. Reducing: What is 5 mod 3? How about 124209 mod 10? What about 3970491 mod 9? Can you find a rule for reducing modulo 9?
 - **2. Addition:** What is $3+8 \mod 3$? What about $3-17 \mod 6$?
 - **3.** Multiplication: What is $4 \cdot 5 \mod 6$? What is $3 \cdot 2 \mod 5$? What about $19 \cdot 21 \mod 5$?

Strange properties

There are some unusual things that happen in modular arithmetic.

- **4. Zero and one:** In modulo 6, which numbers multiply to equal 1 (we call these numbers units)? Which numbers multiply to equal 0? Can you answer these questions for any modulus? Try some other examples to get started.
- **5. Division:** Can we divide numbers in modular arithmetic? If so what should $\frac{1}{4}$ be in modulus 5. (remember, the only elements in modulus 5 are 0,1,2,3 and 4). Can you find a number that is $\frac{1}{4}$ in modulus 6? In general which numbers can we divide by?
 - **6. Exponents:** What is $2^5 \mod 3$? Can you find $3^{102} \mod 7$? What is the last digit of 3^{2017} ?

Formalizing some rules

Let's practice writing sum proofs of arithmetic rules.

- **7.** Prove that $a + b \mod n = (a \mod n) + (b \mod n)$.
- **8.** Write and prove a similar statement for multiplication.
- 9. Write and prove a statement about exponentiation in modular arithmetic.

Addition and multiplication tables

Make a multiplication table for modulus 2, modulus 3, modulus 4, modulus 5 and modulus 7. Do notice anything or see any patterns?

December 8, 2017

Divisors of n

We say n and m are coprime if they share no prime factors.

- **10.** How can you tell if m and n are coprime? Are 9143 and 2701 coprime?
- 11. How many divisors does p have? How many divisors does p^2 have? How many divisors does a general number p have?
 - 12. How many elements of modulus n are units (multiply with another number to equal 1)?

Amazing proofs

These facts are both surprising and useful.

- 13. Prove that $(x+y)^p = x^p + y^p \mod p$ where p is prime and x and y are variables.
- **14.** Prove that $a^p = a \mod p$.
- **15.** Prove that if $a = b \mod p 1$ then $c^a = c^b \mod p$.

More things to try

If you finish everything else, think about these problems. Some are easier than others and they might involve ideas outside the scope of this worksheet.

- **16.** What integers have a square root modulo p? How many of them are there?
- **17.** Simplify $\binom{a \cdot p}{b \cdot p} \mod p$.
- 18. A perfect number is a number that equals the sum of its divisors. Show that if a is an odd perfect number, then $a = 1 \mod 4$.
- 19. Multiplying 10112359550561797752808988764044943820224719 by 9 moves the 9 at the end to the front. Are there any other numbers that have this property?
- **20.** Let F_n denote the *n*th Fibonacci number and let p be an odd prime. Show that if 5 has a square root mod p then F_{p-1} is divisible by p.